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In this paper as a result of the analytical solution of the Navier-Stokes equations for 
gas flow in the plane semicircular annular channel the radial and circumference 
velocity components were determined taking into account boundary conditions, 
limitations and hypotheses. Equation for gas leakages determination and expression 
for pressure distribution were received. 
Keywords: hydrodynamics, the Navier–Stokes equations, the flow in the plane curvilinear 
channel, inertial gas-dynamic separation. 

1. Introduction 
The processes of formation and separation of the heterogeneous dispersion system 

(emulsions, suspensions, aerosols) play an important role in science and technology. 
In terms of specific energy consumption and efficiency of separation, methods of 
inertial gas-dynamic and inertial-filtrating separation, which are differ in the ways of 
formation of the geometrical configuration of the separation channels, and the 
character of movement and path of flow, are considered to be optimal [1]. 

Traditionally, the corrugated packing blocks with sine wave or zigzag form (corner 
packing blocks) are set to separators. The first are widely used in the separators of 
domestic production, the second – in the international. In both cases, the scientific 
problem of hydrodynamic processes modeling aimed to predict separation efficiency, 
as well as development of reliable engineering design techniques of typical separation 
device is a topical problem. 

It should be noted that the theory of isothermal fluid or gas flow is based on system 
of main equations of fluid dynamics: continuity and Navier-Stokes equations. Solution 
for the given system is one of the six Millenium problems [2]. In recent times, 
mathematicians and physicists are keenly discussing the main statements of this 
problem [3]. Also there is an opinion of the impossibility of solving of this problem 
with currently existing methods [4]. Analytical solutions of the equations are found 
only in certain special cases, for small Reynolds numbers and simple geometry of the 
channels (e.g., Poiseuille flow). In other cases the numerical simulation with 
computational fluid dynamics and finite element analysis is used. 

This article studies the mathematical formulation and solution of the problem of 
modeling the gas-liquid flow motion in the plane curvilinear channel of the separation 
devices with rigid stationary walls. 

2. Problem Objectives and the Mathematical Model 
All of the following mathematical formulations as well as the system of nonlinear 

differential equations of the 2nd order have an analytical solution only in very rare 
cases of the simple geometry of the channels. 

Hereby in this paper has been accepted such simplifications and assumptions as the 
plane flow along the curved channel (Navier-Stokes equations are compiled for two-
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dimensional space in the polar coordinate system). It is expected that overflow and 
changing of velocity and pressure fields in channel height are insignificantly in 
comparison with the similar parameters through the channel length. Pressure 
difference over the channel width is also insignificant due to the small channel width.  
Significant changing of the pressure difference takes place along the channel length, 
herewith the curvilinear viscous flow is accompanied by the process of conversion of 
the mechanical energy from the potential to the kinetic and vice versa. 

Isothermal gas flow in the plane semicircular annular channel (fig. 1) is considered 
due to the circumferential pressure gradient (p = p(φ), ∂p/∂r = 0) that is described in 
the polar coordinates by the continuity and Navier-Stokes equations: 
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where ρ is gas density; ε is turbulent viscosity coefficient according to Boussinesq 
hypothesis. 

 

 
Fig. 1 – The analytical model of the channel 

 
For given conditions at the inlet and outlet of the separation channels (an expense 

of a continuous phase, velocity, pressure and the stream direction) taking into account 
viscosity, an optimal geometric shape of the channel that provides the minimum of 
total pressure loss, is exists. The exact solution of a problem of optimum profiling has 
significant difficulties. Approximating methods based on simple physical 
understanding of hydrodynamically expedient distribution of the gas velocities in the 
flow core and near the channel walls are used in practice [1, 5]. In this case, 
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simplification of walls profile of the curvilinear channel assuming that curvilinear 
sites have constants internal r1 and external r2 radiuses is permitted. 

 
3. Solving Equations 
The distribution functions of the radial and circumferential velocities, satisfying the 

continuity equation, are accepted as infinite modified power series 
( ) ( ) ( ) ( ) ( ),;
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where Ai(φ) are functions to be further defined; fi(r) are linearly independent functions, 
which satisfy the boundary conditions of non-penetration of gas into the channel wall 
(fi(r1) = fi(r2) = 0); and q is the constant leakage; β(r) = 6(r – r1)(r2 – r)/δ2 is the 

distribution function of the circumferential velocity (β(r1) = β(r2) = 0, 1
2
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drβ ); δ  

is the radial gap. Functions ψi = fi + rdfi/dr must satisfy the condition ( ) 1
2

1
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r

r
i drrψ , 

therefore fi = (r – r1)i(r – r2)i. 
Because of the small radial gap (δ << r) functions Ai are determined from the 

equations of motion (1), which are averaged in the gap: 
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where are flow coefficients κ1,2, coefficients of convective inertia forces ξi1,2 and 
turbulent viscosity forces γi1,2: 
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The coefficients (4) are equal to zero for i > 3. Particularly for i = 2 the 1st equation 
(3) takes the form of the ordinary differential equation 

σθθ −=+−− AkAAA 2////// 3                                        (5) 
with constant coefficients θ = qξ1/(εγ1), k2 = 2ξ2/ξ1, σ = q2κ1/(εγ1). General solution is 
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where λk are the roots of the characteristic equation λ3 – θλ2 – 3λ + k2θ = 0. Integration 
constants Ck are determined by the conditions: 

1) А/(0) = 0 is the condition of absence of the radial velocity in the inlet section; 
2) А(0) = 0 is the hypothesis of initial circumferential velocity profile; 
3) ( )[ ] constA =

∞→
ϕϕ

ϕ
/lim  is the condition of the velocity gradient limitation. 
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Integration of the 2nd equation (3) allows to define the pressure distribution 
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where р0 is inlet pressure; the resistance coefficients are a1 = πρκ2/δ, a2 ≈ 0,  

a3 = πρκ1ξ1/(3εγ1δ). Gas leakage is the real root of equation pqa
k

k
k ∆=∑

=

3

1

, where  

Δp is the pressure difference. 
Hereby, in consequence of the analytical solution of the gas motion equations, the 

radial and circumference velocity components were determined. Boundary conditions, 
limitations and hypotheses were taken into account. Equation for gas leakages 
determination and expression for pressure distribution were received. 

4. Conclusion 
Analyzing the results is shown that axisymmetric inlet gas-liquid flow along a 

curved channel forms a vortex in the cavities on the outer radius with period π radians, 
as well as the dynamic pressure pulsations. Therefore, it is advisable to give sinusoidal 
form to the wall, which is optimal in view of the assumption about the minimum 
pressure drop, excluding separated flow at the joined sections with jumpwise change 
of the radius of curvature. Subsequent investigations will be directed to numerical 
simulations of gas-dynamic separation in curved channels with flexible walls, which is 
associated with the solution of the hydroaeroelasticity problem for interaction of 
dispersed gas flow with baffle elements. 
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