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In this paper as a result of the analytical solution of the Navier-Stokes equations for
gas flow in the plane semicircular annular channel the radial and circumference
velocity components were determined taking into account boundary conditions,
limitations and hypotheses. Equation for gas leakages determination and expression
for pressure distribution were received.
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1. Introduction

The processes of formation and separation of the heterogeneous dispersion system
(emulsions, suspensions, aerosols) play an important role in science and technology.
In terms of specific energy consumption and efficiency of separation, methods of
inertial gas-dynamic and inertial-filtrating separation, which are differ in the ways of
formation of the geometrical configuration of the separation channels, and the
character of movement and path of flow, are considered to be optimal [1].

Traditionally, the corrugated packing blocks with sine wave or zigzag form (corner
packing blocks) are set to separators. The first are widely used in the separators of
domestic production, the second — in the international. In both cases, the scientific
problem of hydrodynamic processes modeling aimed to predict separation efficiency,
as well as development of reliable engineering design techniques of typical separation
device is a topical problem.

It should be noted that the theory of isothermal fluid or gas flow is based on system
of main equations of fluid dynamics: continuity and Navier-Stokes equations. Solution
for the given system is one of the six Millenium problems [2]. In recent times,
mathematicians and physicists are keenly discussing the main statements of this
problem [3]. Also there is an opinion of the impossibility of solving of this problem
with currently existing methods [4]. Analytical solutions of the equations are found
only in certain special cases, for small Reynolds numbers and simple geometry of the
channels (e.g., Poiseuille flow). In other cases the numerical simulation with
computational fluid dynamics and finite element analysis is used.

This article studies the mathematical formulation and solution of the problem of
modeling the gas-liquid flow motion in the plane curvilinear channel of the separation
devices with rigid stationary walls.

2. Problem Objectives and the Mathematical Model

All of the following mathematical formulations as well as the system of nonlinear
differential equations of the 2" order have an analytical solution only in very rare
cases of the simple geometry of the channels.

Hereby in this paper has been accepted such simplifications and assumptions as the
plane flow along the curved channel (Navier-Stokes equations are compiled for two-
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dimensional space in the polar coordinate system). It is expected that overflow and
changing of velocity and pressure fields in channel height are insignificantly in
comparison with the similar parameters through the channel length. Pressure
difference over the channel width is also insignificant due to the small channel width.
Significant changing of the pressure difference takes place along the channel length,
herewith the curvilinear viscous flow is accompanied by the process of conversion of
the mechanical energy from the potential to the kinetic and vice versa.

Isothermal gas flow in the plane semicircular annular channel (fig. 1) is considered
due to the circumferential pressure gradient (p = p(¢), op/or = 0) that is described in
the polar coordinates by the continuity and Navier-Stokes equations:
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where p is gas density; ¢ is turbulent viscosity coefficient according to Boussinesq
hypothesis.

Fig. 1 — The analytical model of tH'e""éHénnel

For given conditions at the inlet and outlet of the separation channels (an expense
of a continuous phase, velocity, pressure and the stream direction) taking into account
viscosity, an optimal geometric shape of the channel that provides the minimum of
total pressure loss, is exists. The exact solution of a problem of optimum profiling has
significant  difficulties. Approximating methods based on simple physical
understanding of hydrodynamically expedient distribution of the gas velocities in the
flow core and near the channel walls are used in practice [1, 5]. In this case,
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simplification of walls profile of the curvilinear channel assuming that curvilinear
sites have constants internal r, and external r, radiuses is permitted.

3. Solving Equations
The distribution functions of the radial and circumferential velocities, satisfying the
continuity equation, are accepted as infinite modified power series

V, = ZdA‘ f(r);Vv, =qp(r) ZA¢)(y ...... +(2)

where Ai(p) are functions to be further defined; fi(r) are Ilnearly independent functions,
which satisfy the boundary conditions of non-penetration of gas into the channel wall
(fi(r)) = fi(ro) = 0); and q is the constant leakage; A(r) = 6(r — ri)(r2 — r)/d? is the

distribution function of the circumferential velocity (4(ry) = A(r2) = 0, J',Bdr =1);0

n

is the radial gap. Functions y; = f; + rdfi/dr must satisfy the conditionj.wi (r)dr =1,
n
therefore fi = (r — r1)'(r—ro)'.
Because of the small radial gap (6 << r) functions A; are determined from the
equations of motion (1), which are averaged in the gap:
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where are flow coefficients xi12, coefficients of convective inertia forces &i, and
turbulent viscosity forces yi1,2:
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The coefficients (4) are equal to zero for i > 3. Particularly for i = 2 the 1% equation
(3) takes the form of the ordinary differential equation

A" — 6N —3A + k*6A = — (5)

with constant coefficients 6 = qéll(gyl) k2 251, o= q kl/(ayl) General solution is
C,.e’ 6
2 9 (6)

where A are the roots of the characterlstlc equation A — 04? — 31 + k%9 = 0. Integration
constants Cy are determined by the conditions:
1) A4'(0) =0 is the condition of absence of the radial velocity in the inlet section;
2) A(0) =0 is the hypothesis of initial circumferential velocity profile;
3) lim[A(p)/ ¢]= const is the condition of the velocity gradient limitation.
(ﬂ‘)OO
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Integration of the 2" equation (3) allows to define the pressure distribution
3
p(¢)= Po _Zaqu' (7
k=1
where po is inlet pressure; the resistance coefficients are a1 = mpra/d, a2 = 0,

3

as = mpra&i/(3ey10). Gas leakage is the real root of equation »"a,q“=Ap, where
k=1

Ap is the pressure difference.

Hereby, in consequence of the analytical solution of the gas motion equations, the
radial and circumference velocity components were determined. Boundary conditions,
limitations and hypotheses were taken into account. Equation for gas leakages
determination and expression for pressure distribution were received.

4. Conclusion

Analyzing the results is shown that axisymmetric inlet gas-liquid flow along a
curved channel forms a vortex in the cavities on the outer radius with period zradians,
as well as the dynamic pressure pulsations. Therefore, it is advisable to give sinusoidal
form to the wall, which is optimal in view of the assumption about the minimum
pressure drop, excluding separated flow at the joined sections with jumpwise change
of the radius of curvature. Subsequent investigations will be directed to numerical
simulations of gas-dynamic separation in curved channels with flexible walls, which is
associated with the solution of the hydroaeroelasticity problem for interaction of
dispersed gas flow with baffle elements.
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